Сюрпризы митохондриального генома презентация, доклад

Геном митохондрий

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов — исследование закончено в 1981 году[23], по другому источнику 16569 пар[24])

и содержит 37 генов — 13 кодируют белки[25], 22 — гены тРНК, 2 — рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать.

Генный состав мтДНК разных видов растений, грибов и особенно протистов [26] различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов:

он содержит 97 генов, в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании, а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы, микроспоридий и лямблий) не содержат ДНК.

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe) до 100 314 (сордариомицетPodospora anserina) пар нуклеотидов[27].

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК[23].

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНКГены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q - цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтазаMT-ATP6, MT-ATP8
рРНКMT-RNR1 (12S), MT-RNR2 (16S)
тРНКMT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Дальнейшее чтение

  • Ли, Сянци; Лю, Ляньюн; Си Цянь; Чжао, Сюэмэй; Фанг, Миншуан; Ма, Цзюньхуа; Чжу, Чжаохуэй; Ван, Син; Ши, Чао; Ван, Цзиннань; Чжу, Хунлин; Чжан, Цзичэнь; Чжан, Чаобао; Ху, Шуанган; Ни, Минджи; Гу, Минцзюнь (2021). «Кратковременная депривация сыворотки не вызывает значительных мутаций митохондриальной ДНК в гладкомышечных клетках сосудов, выявленных с помощью новой технологии секвенирования следующего поколения» . Acta Biochimica et Biophysica Sinica . 48 (9): 862–4. DOI : 10,1093 / Abbs / gmw059 . PMID   27261779 .

Загадки митохондрий: зачем человеку второй геном

В митохондриях, интересующих генетиков, врачей, криминалистов и археологов, содержится информация об эволюции биосферы, истории человечества и неизлечимых пока генетических болезнях. Какие загадки удалось решить с их помощью — в материале РИА Новости.

Сюрпризы митохондриального генома презентация, доклад

Генетический код преподносит сюрпризы

Долгое время считалось, что у человека только один геном — в ядре клетки. Именно его структуру расшифровали в 1953 году Френсис Крик и Джеймс Уотсон. А спустя несколько лет нечто вроде ДНК обнаружили в митохондриях — крошечных органеллах внутри клеток. Оказалось, что они содержат еще один, совершенно самостоятельный геном, только гораздо меньших размеров.
Информация в митохондриальной ДНК (ее называют мтДНК) некоторых живых организмов закодирована не так, как в ядерной молекуле, не универсальным кодом. Отличия небольшие, но принципиальные.

Митохондрии снабжают энергией клетку. В ее внутренней мембране вырабатываются молекулы АТФ — универсальное топливо организма. Так вот, геном митохондрии кодирует информацию о синтезе белков-ферментов, без которых производство топлива невозможно.

У человека один из самых маленьких митохондриальных геномов, всего 16,5 тысячи пар нуклеотидов, 37 генов. Для сравнения: у наземных растений — сотни тысяч пар.

Сюрпризы митохондриального генома презентация, доклад
Хромосомная и митохондриальная ДНК в клетке

В митохондрии умещается несколько молекул ДНК. Они свернуты в клубок вместе с белками. В свою очередь, в клетках тела в зависимости от специализации содержится множество митохондрий.

Одно из самых удивительных открытий состоит в том, что в половых клетках — неравное число митохондрий. В человеческих сперматозоидах их нет. Это приводит к тому, что мтДНК наследуется только от матери к дочери. К тому же она не может рекомбинироваться, как ядерная ДНК, то есть составлять разные вариации из двух родительских хромосом. По наследству передаются клоны мтДНК.

Как же вышло, что у нас в клетке два разных генома? Еще в конце XIX века появилась гипотеза, что митохондрии — это бактерии-симбионты, живущие внутри клетки. Они первыми на заре эволюции живого мира стали использовать кислород для дыхания. Возможно, им было безопаснее жить внутри большой клетки, не способной к фотосинтезу. Так возник симбиоз двух типов клеток, который привел к появлению многоклеточных организмов. В наши дни эта гипотеза стала основной.

Сюрпризы митохондриального генома презентация, доклад
Митохондриальная ДНК человека состоит из 16,5 тысячи пар нуклеотидов. В 37 генах закодирована информация о 13 белках.

Ученые расшифровывают мтДНК

Тот факт, у человека есть второй геном, долго оставался в тени, пока в конце XX века не разработали новые методы секвенирования ДНК и обработки больших объемов данных.

В 1987 году американские ученые сравнили митохондриальные ДНК у представителей 147 разных народов из пяти регионов Земли. Выяснилось, что все они произошли от общего предка по материнской линии — митохондриальной Евы, жившей в Африке двести тысяч лет назад.

Дело в том, что если некая популяция людей разделяется и каждая группа начинает вести относительно изолированный образ жизни, то у них со временем накапливаются разные наборы мутаций, по числу которых можно определить время расхождения групп.

Митохондриальная ДНК оказалась очень удобной для изучения ископаемых останков человека. В ядре клетки — только одна молекула ДНК, тогда как митохондрий в одной клетке — десятки тысяч. К тому же молекула мтДНК свернута в кольцо. Поэтому она более устойчива к внешним воздействиям и выдерживает даже небольшое нагревание, что важно, к примеру, при идентификации обгоревших останков.

Недаром у неандертальцев сначала расшифровали митохондриальный геном. Эту работу завершил в 2009-м шведский ученый Сванте Паабо.

Сейчас за относительно небольшие деньги в коммерческих компаниях можно заказать тест своей мтДНК и узнать регион, из которого произошли предки по материнской линии.

Поломка во втором геноме

Митохондриальная ДНК мутирует в 17 раз быстрее, чем ядерная. В результате в одной клетке могут быть митохондрии с разным геномом. Если число мтДНК-мутантов преобладает, митохондрии начинают работать неправильно, а клетки гибнут. Пострадать может любой орган: мозг, мускулы, почки, кровь, глаза, уши.

Диагностика митохондриальных болезней очень сложная, лечения от них нет. Зато генетики научились предотвращать их наследование. В одном случае берут донорскую яйцеклетку от здоровой женщины, не родственной супруге по материнской линии. Ее оплодотворяют семенем супруга и подсаживают в матку.

В другом — из донорской яйцеклетки удаляют собственное ядро и вставляют туда ядро из яйцеклетки супруги. Затем оплодотворяют составную яйцеклетку спермой супруга и подсаживают в матку. Рожденных таким способом называют “детьми от трех родителей”.

Наследование по материнской линии

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов.

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика, которое при оплодотворении иногда теряется.

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов.

Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков[11]. Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву», гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий[12][13].

Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы,[14]медоносных пчел[15] и цикад.[16]

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей,[17][18] при этом митохондрии, полученные от самца, впоследствии отторгаются.

Особенности митохондриальной днк

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG — терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан[23].

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК, которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает урацил, который при транскрипции гена в РНК заменяет тимин.

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК[23].

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях, кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3′-концевым терминаторным кодонам[23].

Применение

Кроме использования при построении различных филогенетических теорий, изучение митохондриального генома — основной инструмент при проведении идентификации. Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Последовательность участка гена субъединицы I цитохром с-оксидазы, кодируемого в митохондриальной ДНК, широко используется в проектах, связанных с ДНК-баркодированием животных – определением принадлежности организма к тому или иному таксону на основе коротких маркеров в его ДНК[28][29].

Группа Шухрата Миталипова из центра эмбриональных клеток и генной терапии Орегонского университета разработала метод замены митохондриальной ДНК для лечения наследственных митохондриальных заболеваний. Сейчас в Великобритании начаты клинические испытания этого метода, получившего неофициальное название «3-parent baby technique» – «ребенок от трех родителей».

Примеры

Останки американского преступника Джесси Джеймса были идентифицированы с помощью сравнения мтДНК, извлеченной из его останков, и мтДНК сына правнучки его сестры по женской линии.

Точно так же останки Александры Федоровны (Аликс Гессенской) , последней императрицы России, и ее детей были идентифицированы путем сравнения их митохондриальной ДНК с ДНК принца Филиппа, герцога Эдинбургского , чьей бабушкой по материнской линии была сестра Александры Виктория Гессенская .

Точно так же, чтобы идентифицировать останки императора Николая II, его митохондриальную ДНК сравнивали с ДНК Джеймса Карнеги, 3-го герцога Файфа , чья прабабушка по материнской линии Александра Датская (королева Александра) была сестрой матери Николая II Дагмар Датской (императрица Мария Федоровна).

Точно так же останки короля Ричарда III .

Примечания

  1. Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm, Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593—629. PMID 14086138
  3. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna, Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127—132.
  4. Iborra F. J., Kimura H., Cook P. R.The functional organization of mitochondrial genomes in human cells (англ.) // BMC Biol. (англ.) : journal. — 2004. — Vol. 2. — P. 9. — doi:10.1186/1741-7007-2-9. — PMID 15157274.
  5. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6
  6. Wiesner R. J., Ruegg J. C., Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues (англ.) // Biochim Biophys Acta. (англ.) : journal. — 1992. — Vol. 183. — P. 553—559. — PMID 1550563.
  7. doi:10.1016/j.exppara.2006.04.005 (недоступная ссылка)
  8. Alexeyev, Mikhail F.; LeDoux, Susan P.; Wilson, Glenn L.Mitochondrial DNA and aging (неопр.) // Clinical Science. — 2004. — July (т. 107, № 4). — С. 355—364. — doi:10.1042/CS20040148. — PMID 15279618.
  9. Ченцов Ю. С. Общая цитология. — 3-е изд. — МГУ, 1995. — 384 с. — ISBN 5-211-03055-9.
  10. Sutovsky, P., et. al. Ubiquitin tag for sperm mitochondria (англ.) // Nature. — Nov. 25, 1999. — Vol. 402. — P. 371—372. — doi:10.1038/46466. — PMID 10586873. Discussed in [1]
  11. Vilà C., Savolainen P., Maldonado J. E., and Amorin I. R. Multiple and Ancient Origins of the Domestic Dog (англ.) // Science : journal. — 1997. — 13 June (vol. 276). — P. 1687—1689. — ISSN0036-8075. — doi:10.1126/science.276.5319.1687. — PMID 9180076.
  12. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA (англ.) // Science : journal. — 1991. — Vol. 251. — P. 1488—1490. — doi:10.1126/science.1672472. — PMID 1672472.
  13. Penman, Danny. Mitochondria can be inherited from both parents, NewScientist.com (23 августа 2002). Дата обращения 5 февраля 2008.
  14. Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method (англ.) // Genet. Res. (англ.) : journal. — 1992. — Vol. 59, no. 2. — P. 81—4. — PMID 1628820.
  15. Meusel M. S., Moritz R. F. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs (англ.) // Curr. Genet. : journal. — 1993. — Vol. 24, no. 6. — P. 539—543. — doi:10.1007/BF00351719. — PMID 8299176.
  16. Fontaine, K. M., Cooley, J. R., Simon, C. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.) (исп.) // PLoS One. : diario. — 2007. — V. 9. — P. e892. — doi:10.1371/journal.pone.0000892.
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice (англ.) // Nature. — 1991. — Vol. 352, no. 6332. — P. 255—257. — doi:10.1038/352255a0. — PMID 1857422.
  18. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage (англ.) // Genetics : journal. — 1998. — Vol. 148, no. 2. — P. 851—857. — PMID 9504930.
  19. Zhao X., Li N., Guo W., et al. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) (англ.) // Heredity : journal. — 2004. — Vol. 93, no. 4. — P. 399—403. — doi:10.1038/sj.hdy.6800516. — PMID 15266295.
  20. Steinborn R., Zakhartchenko V., Jelyazkov J., et al. Composition of parental mitochondrial DNA in cloned bovine embryos (англ.) // FEBS Lett. (англ.) : journal. — 1998. — Vol. 426, no. 3. — P. 352—356. — doi:10.1016/S0014-5793(98)00350-0. — PMID 9600265.
  21. Schwartz M., Vissing J. Paternal inheritance of mitochondrial DNA (англ.) // N. Engl. J. Med. : journal. — 2002. — Vol. 347, no. 8. — P. 576—580. — doi:10.1056/NEJMoa020350. — PMID 12192021.
  22. Митохондриальная ДНК может передаваться по отцовской линии • Полина Лосева • Новости науки на «Элементах» • Генетика, Микробиология
  23. 12345Айала Ф. Д. Современная генетика. 1987.
  24. Архивированная копия (неопр.) (недоступная ссылка). Дата обращения: 10 октября 2009.Архивировано 13 августа 2021 года.
  25. Даниленко Н.Г., Давыденко О.Г – Миры геномов органелл
  26. MW Gray, BF Lang, R Cedergren, GB Golding, C Lemieux, D Sankoff, M Turmel, N Brossard, E Delage, TG Littlejohn, I Plante, P Rioux, D Saint-Louis, Y Zhu and G Burger. Genome structure and gene content in protist mitochondrial DNAs (англ.) // Nucleic Acids Research (англ.) : journal. — 1998. — Vol. 26. — P. 865—878.http://nar.oxfordjournals.org/cgi/content/abstract/26/4/865
  27. Дьяков Ю. Т., Шнырева А. В., Сергеев А. Ю.Введение в генетику грибов. — М.: изд. центр «Академия», 2005. — С. 52. — ISBN 5-7695-2174-0.
  28. Paul D. N. Hebert, Alina Cywinska, Shelley L. Ball, Jeremy R. deWaard.Biological identifications through DNA barcodes (англ.) // Proceedings of the Royal Society of London B: Biological Sciences. — 2003-02-07. — Vol. 270, iss. 1512. — P. 313—321. — ISSN0962-8452. — doi:10.1098/rspb.2002.2218.
  29. Živa Fišer Pečnikar, Elena V. Buzan.20 years since the introduction of DNA barcoding: from theory to application // Journal of Applied Genetics. — 2021-02-01. — Т. 55, вып. 1. — С. 43—52. — ISSN2190-3883. — doi:10.1007/s13353-013-0180-y.
  30. CBOL Plant Working Group1, Peter M. Hollingsworth, Laura L. Forrest, John L. Spouge, Mehrdad Hajibabaei.A DNA barcode for land plants (англ.) // Proceedings of the National Academy of Sciences. — National Academy of Sciences, 2009-08-04. — Vol. 106, iss. 31. — P. 12794—12797. — ISSN0027-8424. — doi:10.1073/pnas.0905845106.
  31. Алла Астахова.Тонкая работа - 2 (неопр.). Блог о здравоохранении (22 августа 2021).

Природа №6, 2002 г. сюрпризы митохондриального генома г. м. дымшиц

Природа №6, 2002 г.

Сюрпризы митохондриального генома

Г.М. Дымшиц
Со времени обнаружения в митохондриях молекул ДНК прошло четверть века, прежде чем ими заинтересовались не только молекулярные биологи и цитологи, но и генетики, эволюционисты, а также палеонтологи и криминалисты, историки и лингвисты. Такой широкий интерес спровоцировала работа А.Уилсона из Калифорнийского университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человеческих рас, заселяющих пять континентов.

По типу, местоположению и количеству индивидуальных мутаций установили, что все митохондриальные ДНК возникли из одной предковой последовательности нуклеотидов путем дивергенции. В околонаучной прессе вывод этот интерпретировали крайне упрощенно — все человечество произошло от одной женщины, названной митохондриальной Евой (и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад.

Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из останков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад [1].

Митохондрии называют энергетическими станциями клетки. Помимо наружной гладкой мембраны они имеют внутреннюю мембрану, образующую многочисленные складки — кристы.

В них встроены белковые компоненты дыхательной цепи — ферменты, участвующие в преобразовании энергии химических связей окисляемых питательных веществ в энергию молекул аденозинтрифосфорной кислоты (АТФ). Такой “конвертируемой валютой” клетка оплачивает все свои энергетические потребности. В клетках зеленых растений помимо митохондрий есть еще и другие энергетические станции — хлоропласты. Они работают на “солнечных батареях”, но тоже образуют АТФ из АДФ и фосфата. Как и митохондрии, хлоропласты — автономно размножающиеся органеллы — также имеют две мембраны и содержат ДНК.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эукариотических рибосом, расположенных на мембранах эндоплазматической сети. Однако на рибосомах митохондрий образуется не более 5% от всех белков, входящих в их состав. Большая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндоплазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии — это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферменты дыхательной цепи митохондрий состоят из разных полипептидов, часть которых кодируется ядерным, а часть — митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования — цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в митохондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Размеры и формы митохондриальных геномов
К настоящему времени прочитано более 100 разных геномов митохондрий. Набор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных видов животных, растений, грибов и простейших.

Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomonas americana — 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов.

У большинства высших животных геном митохондрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК).

У растений и простейших, в отличие от животных и большинства грибов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеотидного синтеза, такие как ДНК-полимераза (осуществляющая репликацию митохондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохондрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерархии эукариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору генов, порядку их расположения и экспрессии, но по размеру и форме ДНК. Подавляющее большинство описанных сегодня митохондриальных геномов представляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линейные, а у некоторых простейших, например инфузорий, в митохондриях обнаружены только линейные ДНК [2].

Как правило, в каждой митохондрии содержится несколько копий ее генома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них — по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, содержащих по два генома, а в клетках дрожжей S.cerevisiae — до 22 митохондрий, имеющих по четыре генома.

Митохондриальный геном растений, как правило, состоит из нескольких молекул разного размера. Одна из них, “основная хромосома”, содержит большую часть генов, а кольцевые формы меньшей длины, находящиеся в динамическом равновесии как между собой, так и с основной хромосомой, образуются в результате внутри- и межмолекулярной рекомбинации благодаря наличию повторенных последовательностей (рис.1).

Сюрпризы митохондриального генома презентация, доклад

Рис 1. Схема образования кольцевых молекул ДНК разного размера в митохондриях растений.

Рекомбинация происходит по повторенным участкам (обозначены синим цветом).

В митохондриях большинства организмов (кроме высших животных) часть кольцевых молекул ДНК присутствует в виде олигомеров, которые можно разделить на три класса: линейные; кольцевые, имеющие контурную длину, кратную длине мономерных колец; цепные, катенаны, состоящие из топологически связанных, т.е. продетых друг в друга, мономерных колец (рис.2).

Так, в единственной митохондрии простейших из отряда кинетопластид, включающего эндопаразита человека — трипаносому, содержатся тысячи кольцевых молекул ДНК. У Trypanosoma brucei имеются два типа молекул: 45 одинаковых макси-колец, каждое из которых состоит из 21 тыс. пар нуклеотидов, и 5.5 тыс. идентичных друг другу мини-колец по 1000 пар нуклеотидов. Все они, соединяясь в катенаны, образуют переплетенную сеть, которая вместе с белками формирует структуру, называемую кинетопластом.

Сюрпризы митохондриального генома презентация, доклад

Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК. ori — район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар нуклеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7—8-кратные различия в размерах мтДНК высших растений обнаруживаются даже в пределах одного семейства.

Длина мтДНК позвоночных животных отличается незначительно: у человека — 16569 пар нуклеотидов, у свиньи — 16350, у дельфина — 16330, у шпорцевой лягушки Xenopus laevis — 17533, у карпа — 16400. Эти геномы сходны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что последний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% некодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и слабая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок.

Радикалы кислорода служат причиной специфических замен ЦТ (дезаминирование цитозина) и ГТ (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством — они не метилируются, в отличие от ядерных и прокариотических ДНК.

Известно, что метилирование (временная химическая модификация нуклеотидной последовательности без нарушения кодирующей функции ДНК) — один из механизмов программируемой инактивации генов [3].

Репликация и транскрипция мДНК млекопитающих
У большинства животных комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количество “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов.

Так они и называются — H (heavy — тяжелая) и L (light — легкая) цепь. В начале репликации молекулы мтДНК образуется так называемая D-петля (от англ. displacement loop — петля смещения).

Эта структура, видимая в электронный микроскоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и комплементарным ей вновь синтезированным фрагментом ДНК длиной 450—650 (в зависимости от вида организма) нуклеотидов, имеющим на 5′-конце рибонуклеотидную затравку, которая соответствует точке начала синтеза Н-цепи (ori H).

Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступна для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовательно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким образом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Сюрпризы митохондриального генома презентация, доклад

Рис 3. Схема репликации мтДНК млекопитающих.

Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь, потом начинается синтез дочерней L-цепи.

В митохондриях общее число молекул с D-петлей значительно превышает число полностью реплицирующихся молекул. Обусловлено это тем, что у D-петли есть дополнительные функции — прикрепление мтДНК к внутренней мембране и инициация транскрипции, поскольку в этом районе локализованы промоторы транскрипции обеих цепей ДНК.

В отличие от большинства эвкариотических генов, которые транскрибируются независимо друг от друга, каждая из цепей мтДНК млекопитающих переписывается с образованием одной молекулы РНК, начинающейся в районе ori H. Помимо этих двух длинных молекул РНК, комплементарных Н- и L-цепям, формируются и более короткие участки Н-цепи, которые начинаются в той же точке и заканчиваются на 3′-конце гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а также фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3′-концам которых присоединяются полиадениловые последовательности. 5′-концы этих мРНК не кэпируются, что необычно для эвкариот. Сплайсинга (сращивания) не происходит, поскольку ни один из митохондриальных генов млекопитающих не содержит интронов.

Сюрпризы митохондриального генома презентация, доклад

ND1—ND6, ND4L — гены субъединиц НAД-H-дегидрогеназного комплекса;

СОI—COIII — гены субъединиц цитохром-с-оксидазы;

ATP6, ATP8 — гены субъединиц AТФ-синтетазы

Cyt b — ген цитохрома b.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов.

Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.

Сюрпризы митохондриального генома
Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжевого генома в 4-5 раз больше — около 80 тыс. пар нуклеотидов. Хотя кодирующие последовательности мтДНК дрожжей высоко гомологичны соответствующим последовательностям у человека, дрожжевые мРНК дополнительно имеют 5′-лидерную и 3′-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохромоксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокаталитически (без участия каких-либо белков) вырезается копия большей части первого интрона. Оставшаяся РНК служит матрицей для образования фермента матуразы, участвующей в сплайсинге. Часть ее аминокислотной последовательности закодирована в оставшихся копиях интронов. Матураза вырезает их, разрушая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пересмотреть представление об интронах, как о “ничего не кодирующих последовательностях”.

Сюрпризы митохондриального генома презентация, доклад

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей.

На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза,

необходимая для второго этапа сплайсинга.

При изучении экспрессии митохондриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что последовательность нуклеотидов в мРНК в точности соответствует таковой в кодирующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т.е. после транскрипции изменяется ее первичная структура — вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, последовательность аминокислот в которой не имеет ничего общего с последовательностью, кодируемой нередактированной мРНК (см. таблицу).

Происходит это за счет сдвига рамки считывания на число нуклеотидов, не кратное размеру триплета (в данном случае на четыре). Новая белковая субъединица, необходимая для работы фермента, образуется в митохондриях паразита только тогда, когда он попадает в организм холоднокровной мухи и нуждается в окислительном фосфорилировании для получения большого количества молекул АТФ. Если трипаносома живет в организме теплокровных млекопитающих, ей достаточно АТФ, образующейся в процессе гликолиза.

Впервые обнаруженное в митохондриях трипаносомы редактирование РНК широко распространено в хлоропластах и митохондриях высших растений. Найдено оно и в соматических клетках млекопитающих, например, в кишечном эпителии человека редактируется мРНК гена аполипопротеина.

Наибольший сюрприз ученым митохондрии преподнесли в 1979 г. До того времени считалось, что генетический код универсален и одни и те же триплеты кодируют одинаковые аминокислоты у бактерий, вирусов, грибов, растений и животных. Английский исследователь Беррел сопоставил структуру одного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что генетический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т.е. подчиняется следующему правилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеотиды принадлежат к одному классу (пуриновых — А, Г, или пиримидиновых — У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ — метионин, в то время как в идеальном коде митохондрий оба эти триплета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА — стоп-кодон. В универсальном коде оба отклонения касаются принципиальных моментов синтеза белка: кодон АУГ — инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Можно сказать, что митохондрии говорят на разных языках, но никогда — на языке ядра.

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 гена тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в универсальном — три)? Дело в том, что при синтезе белка в митохондриях упрощены кодон-антикодонные взаимодействия — для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеотидом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме напротив кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включение лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за присоединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриального синтеза полипептидов зашифрованы в ядре. При этом синтез белков в митохондриях не подавляется циклогексимидом, блокирующим работу эвкариотических рибосом, но чувствителен к антибиотикам эритромицину и хлорамфениколу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток [4].

Симбиотическая теория происхождения митохондрий
Гипотезу о происхождении митохондрий и растительных пластид из внутриклеточных бактерий-эндосимбионтов высказал Р.Альтман еще в 1890 г. За век бурного развития биохимии, цитологии, генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на большом фактическом материале. Суть ее такова: с появлением фотосинтезирующих бактерий в атмосфере Земли накапливался кислород — побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных гетеротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с большим КПД, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. Часть свободно живущих аэробов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к дыханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие усилия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:
совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

по нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику;

белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

до сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных геномов простейших, грибов, растений и высших животных. Но во всех случаях основная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой.

Новый геном может создавать метаболические пути, приводящие к образованию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть — в эндоплазматической сети [5]. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрипции и трансляции мтДНК, контролируя тем самым рост и размножение митохондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много митохондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Цитоплазматическая наследственность
Помимо кодирования ключевых компонентов дыхательной цепи и собственного белоксинтезирующего аппарата, митохондриальный геном в отдельных случаях участвует в формировании некоторых морфологических и физиологических признаков. К таким признакам относятся характерные для ряда видов высших растений синдром NCS (non-chromosomal stripe, нехромосомно кодируемая пятнистость листьев) и цитоплазматическая мужская стерильность (ЦМС), приводящая к нарушению нормального развития пыльцы. Проявление обоих признаков обусловлено изменениями в структуре мтДНК. При ЦМС наблюдаются перестройки геномов митохондрий в результате рекомбинационных событий, ведущих к делециям, дупликациям, инверсиям или инсерциям определенных нуклеотидных последовательностей или целых генов. Такие изменения могут вызывать не только повреждения имеющихся генов, но и появление новых работающих генов.

Цитоплазматическая наследственность, в отличие от ядерной, не подчиняется законам Менделя. Это связано с тем, что у высших животных и растений гаметы от разных полов содержат несопоставимые количества митохондрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде — лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т.е. наследование всех митохондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохондриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертильность растений вне зависимости от состояния митохондриального генома.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и митохондриальными генетическими системами, необходимо для понимания сложной иерархической организации эукариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наследственные болезни и старение человека. Накапливаются данные об участии дефектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть мишенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множественные делеции мтДНК обнаружены у больных с тяжелой мышечной слабостью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу.

Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено материнским эффектом — цитоплазматической наследственностью.

Развитие генной терапии внушает надежду на исправление дефектов в геномах митохондрий в обозримом будущем.

Литература
1. Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. №6. С.10—18.

2. Минченко А.Г., Дударева Н.А. Митохондриальный геном. Новосибирск, 1990.

3. Гвоздев В.А. // Сорос. образоват. журн. 1999. №10. С.11—17.

4. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.

5. Скулачев В.П. // Сорос. образоват. журн. 1998. №8. С.2—7.

Игамбердиев А.У. // Сорос. образоват. журн. 2000. №1. С.32—36.

Сюрпризы митохондриального генома презентация, доклад

Проф. Г.М. Дымшиц

(Новосибирский

государственный

университет)

Поделитесь с Вашими друзьями:

Репликация, восстановление, транскрипция и перевод

Репликация митохондрий контролируется ядерными генами и особенно подходит для образования столько митохондрий, сколько требуется конкретной клетке в данный момент.

Транскрипция митохондрий у человека инициируется с трех промоторов , H1, H2 и L ( промоторы тяжелой цепи 1, тяжелой цепи 2 и легкой цепи). Промотор H2 транскрибирует почти всю тяжелую цепь, а промотор L транскрибирует всю легкую цепь. Промотор H1 вызывает транскрипцию двух молекул митохондриальной рРНК.

Когда транскрипция происходит на тяжелой цепи, создается полицистронный транскрипт. Светлая цепь производит либо небольшие транскрипты, которые можно использовать в качестве праймеров , либо один длинный транскрипт.

Производство праймеров происходит путем обработки транскриптов легкой цепи с помощью митохондриальной РНКазы MRP (процессинг митохондриальной РНК). Требование транскрипции для получения праймеров связывает процесс транскрипции с репликацией мтДНК.

В процессе инициации транскрипции в митохондриях участвуют три типа белков: митохондриальная РНК-полимераза ( POLRMT ), митохондриальный фактор транскрипции A (TFAM) и митохондриальные факторы транскрипции B1 и B2 (TFB1M, TFB2M). POLRMT , TFAM и TFB1M или TFB2M собираются на митохондриальных промоторах и начинают транскрипцию.

Митохондриальная трансляция еще не очень хорошо изучена. Трансляции in vitro до сих пор не увенчались успехом, вероятно, из-за сложности выделения достаточного количества мРНК мт, функциональной мРНК и, возможно, из-за сложных изменений, которые мРНК претерпевает перед ее трансляцией.

Формы и число молекул митохондриальной днк

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.[5]

Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.[6]

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК — идентичные макси-кольца (20–50 штук) длиной около 21 т. п. о. и мини-кольца (20 000–55 000 штук, около 300 разновидностей, средняя длина около 1000 п. о.).

Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.[7] В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.